Google Scholar profile
*corresponding author
2025
59. “Organic photoredox catalysts for CO2 reduction: Understanding the mechanisms of catalyst deactivation,” Rane, K.; Sarkar, P.; Mallikarjun Sharada, S.* 2025, J. Phys. Chem. A. Accepted.
58. “Trigonal Planar Bis(carbene)Cu(I) Complexes Enable Divergent H2 Activation with H2O for Accelerated Olefin Hydrogenation,” Patrick, E. A.; Mallikarjun Sharada, S.*, Zoraster, A.; Erickson, J. D.; Ryan, D. E.; Bullock, R. M.; Tran, B. L.* 2025 Angew. Chem. Intl. Ed. e202510627.
57. “Understanding the competition between hydrodechlorination and Friedel-Crafts alkylation in PVC dechlorination with silylium ions,” Roubineau, N. J.; Castro, E. C., Rane, K.; Wood, Z. A.;
Nguyen, A. N.; Bush, N. G.; Mallikarjun Sharada, S.; Fieser, M. E.* 2025, Polym. Chem., 16, 2514-2520.
56. “Anomalous diffusion of metal atoms on oxide surfaces: A machine learning molecular dynamics study of Pt1/TiO2,” Saleem, U.; Mallikarjun Sharada, S.* 2025, J. Phys. Chem. C 129, 8663–8676.
55. “The metal-ligand local mode as a descriptor for catalytic activity,” Patra, A.; Sarkar, P.,
Mallikarjun Sharada, S.*, 2025, Polyhedron, 267, 117336.
54. “AIMD-based protocols for modeling exciplex fluorescence spectra and inter-system crossing in photocatalytic chromophores,” Guidetti, G., Mallikarjun Sharada, S., Krylov, A. I.*, 2025, J. Comp. Chem. 46, e70049.
2024
53. “Hydrogen evolution activity of BaZrS3, BaTiS3, and BaVS3 chalcogenide perovskites,” Humphrey, N.; Tsung, A.; Singh, S.; Irshad, A.; Zhao, B.; Narayan, S.; Ravichandran, R.; Mallikarjun Sharada, S.* 2024, ChemPhysChem, 25, e202300953.
52. “Performance of density functionals for prediction of fluorescence and solvatochromism in intermolecular charge transfer complexes,” Patra, A.; Pipim, G. B.; Krylov, A. I.; Mallikarjun Sharada, S.* 2024 J. Chem. Theory Comput., 20, 2520–2537.
51. “Site-Sensitivity of CO Oxidation Kinetics Catalyzed By Atomically Dispersed Pt1/TiO2,” Bac, S.; Humphrey, N.; Mallikarjun Sharada, S.*, 2024, J. Phys. Chem. C, 128, 9948-9961.
50. “A configuration sampling study of reaction intermediates constituting catalytic cycles for CO
oxidation with Pt1/TiO2,” Humphrey, N.; Bac, S.; Mallikarjun Sharada, S.,* 2024, J. Chem. Phys., 161, 114709.
49. “Linear scaling relationships in homogeneous photoredox catalysis,” Kron, K. J., Mallikarjun Sharada, S.*, 2024, React. Chem. Engg. 9, 3105-3109.
48. “Quantum effects in CH activation with [Cu2O2]2+ complexes,” Bac, S.; Mallikarjun Sharada, S.*, 2024, Phys. Chem. Chem. Phys. 26, 28819-28827.
47. “Transition Structures, Reaction Paths, and Kinetics: Methods and Applications in Catalysis” Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Book). Bac, S.; Lan, Z.; Mallikarjun Sharada, S.* Elsevier. 2022, 4, 496-518.
46. “Matrix Approximation with Side Information: When Column Sampling is Enough,” Chae, J.;
Narayanamurthy, P.; Bac, S.; Mallikarjun Sharada, S.; Mitra, U.*, 2024 IEEE Trans. Sig. Proc. 72, 2276-2291.
2023
45. “Column-based matrix approximation with quasi-polynomial structure,” Chae, J.; Narayanamurthy, P.; Bac, S.; Mallikarjun Sharada, S.; Mitra, U.* 2023 ICASSP.
44. “Simulating Excited-State Complex Ensembles: Fluorescence and Solvatochromism in Amine-Arene Exciplexes,” Patra, A.; Krylov, A. I.*; Mallikarjun Sharada, S.* 2023, J. Chem. Phys. 159, 064101.
43. “Inferring the Energetics of CO2–Aniline Adduct Formation from Vibrational Spectroscopy,” Delibas, B.; Kron, K. J.; Salazar, N.; Cotton, D. E.; Mallikarjun Sharada, S.; Dawlaty, J. M. 2023, J. Phys. Chem. A, 127, 24
42 . “Controlling Selectivity for Dechlorination of Poly(Vinyl Chloride) with (Xantphos)RhCl,” Bush, N.; Assefa, M.; Bac, S.; Mallikarjun Sharada, S.; Fieser, M*. Mater. Horiz. 2023, 10, 2047-2052.
41. “Thermochemical reduction yields novel iron nanophase during decomposition of the perovskite CaTi1-xFexO3-δ,” Luong, J.; Tsung, A.; Humphrey, N.; Guo, H.; Lam, B.; Mallikarjun Sharada, S.; Bowman, W. J.* 2023, ACS Appl. Nano Mater. 6, 1620-1630.
40. “A computational mechanistic study of CH hydroxylation with mononuclear copper-oxygen complexes,” Lan, Z.; Toney, J.; Mallikarjun Sharada, S.* 2023, Catalysis Science and Technology, 13, 342-351.
2022
37. “Recent advances towards efficient calculation of higher nuclear derivatives in quantum chemistry,” Bac, S.; Patra, A.; Kron, K. J.; Mallikarjun Sharada, S.*; 2022, The Journal of Physical Chemistry A, 126, 7795-7805.
36. “A matrix completion algorithm for efficient calculation of quantum and variational effects in chemical reactions” Bac, S.; Quiton, S. J.; Kron, K. J.; Chae, J.; Mitra, U.*; Mallikarjun Sharada, S.* J. Chem. Phys. 2022, 156, 184119.
35. “Organic Photoredox Catalysts for CO2 Reduction: Driving Discovery with Genetic Algorithms”. Kron, K. J.; Rodriguez-Katakura, A.; Regu, P.; Reed, M.; Elhessen, R.; Mallikarjun Sharada, S.* J. Chem. Phys. 2022, 156, 184109.
34. “Modeling and Characterization of Exciplexes Constituting Photoredox Cycles for CO2 Reduction: Insights from Quantum Chemistry and Fluorescence Spectroscopy”. Kron, K. J.; Hunt, J. R.; Dawlaty, J. M.; Mallikarjun Sharada, S*. J. Phys. Chem. A. 2022, 126 (15) 2319-2329.
33. “Toward Efficient Direct Dynamics Studies of Chemical Reactions: A Novel Matrix Completion Algorithm” Quiton, S. J.; Chae, J.; Bac, S.; Kron, K. J.; Mitra, U.; Mallikarjun Sharada, S.* J. Chem. Theory Comput. 2022, 18, 4327-4341.
32. “Kinetics and mechanistic details of bulk ZnO dissolution using a thiol–imidazole system” Koskela, K. M.; Quiton, S. J.; Mallikarjun Sharada, S.*; Williams, T. J.*; Brutchey, R. L. Chem. Sci., 2022, 13, 3208-3215.
31. “CO Oxidation with Atomically Dispersed Catalysts: Insights from the Energetic Span Model.” Bac, S.; Mallikarjun Sharada, S.* ACS Catalysis. 2022, 12 (3), 2064-2076
30. “A computational study of the mechanism of chloroalkane dechlorination with Rh(i) complexes” Bac, S.; Fieser, M. E.; Mallikarjun Sharada, S.* Phys. Chem. Chem. Phys. 2022, 24, 3518-3522.
2021
29. “Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem
5 package,” Epifanovsky, E.; Gilbert, A.; …; Mallikarjun Sharada, S. …; Krylov, A. , J. Chem. Phys. 2021, 155, 084801.
28. “Photoredox Chemistry with Organic Catalysts: Role of Computational Methods” Kron, K. J.; Rodriguez-Katakura, A.; Elhessen, R.; Mallikarjun Sharada, S.* ACS Omega. 2021, 6, (49), 33253-33264.
27. “Perspective and Challenges in Electrochemical Approaches for Reactive CO2 Separations”. Gurkan, B.; Su, X.; Klemm, A.; Kim, Y.; Mallikarjun Sharada, S.; Rodriguez-Katakura, A.; Kron, K. J. iScience. 2021, 24 (12), 103422.
26. “Probing the Ligand Exchange of N-Heterocyclic Carbene-Capped Ag2S Nanocrystals with Amines and Carboxylic Acids,” Smock, S. R.; Alimento, R.; Mallikarjun Sharada, S.*; Brutchey, R. L. Inorg. Chem. 2021, 60, 13699-13706.
25. “Adsorbate-assisted migration of the metal atom in atomically dispersed catalysts: An ab initio molecular dynamics study,” Humphrey, N.; Bac, S.; Mallikarjun Sharada, S.* J. Chem. Phys. 2021, 154, 234709.
24. “A framework for constructing linear free energy relationships to design molecular transition metal catalysts,” Lan, Z.; Mallikarjun Sharada, S.* Phys. Chem. Chem. Phys. 2021, 23, 15543-15556.
23. “Consistent Inclusion of Continuum Solvation in Energy Decomposition Analysis: Theory and Application to Molecular CO2 Reduction Catalysts,” Mao, Y.; Loipersberger, M.; Kron, K.; Derrick, J. S.; Chang, C.; Mallikarjun Sharada, S.; Head-Gordon, M.* Chem. Sci., 2021, 12, 1398-1414.
2020
22. “Ab Initio Molecular Dynamics Reveals New Metal-Binding Sites in Atomically Dispersed Pt1/TiO2 Catalysts,” Humphrey, N.; Bac, S.; Mallikarjun Sharada, S.* J. Phys. Chem. C. 2020, 124, 24187-24195.
21. “Heterobimetallic complexes of IrM (M= Fe II, Co II, and Ni II) core and bridging 2-(diphenylphosphino) pyridine: electronic structure and electrochemical behavior,” Cherepakhin, V.; Hellman, A.; Lan, Z.; Mallikarjun Sharada, S.; Williams, T. J.* Dalton Trans. 2020, 49, 10509-10515.
20. “A matrix completion algorithm to recover modes orthogonal to the minimum energy path in chemical reactions” Quiton, S. J.; Mitra, U.; Sharada, S. M*. J. Chem. Phys. 2020, 153, 054122.
19. “Computational Analysis of Electron Transfer Kinetics for CO2 Reduction with Organic Photoredox Catalysts” Kron, K. J.; Gomez, S. J.; Cave, R. J.; Sharada, S. M*. J. Phys. Chem. A. 2020, 124, 5359-5368.
18. “A new mechanism of metal-ligand cooperative catalysis in transfer hydrogenation of ketones” Demianets, I.; Cherepakhin, V.; Maertens, A.; Lauridsen, P. J.; Sharada, S. M; Williams, T. J*. Polyhedron, 2020,182, 114508.
17. “Synthesis and Electrocatalytic HER Studies of Carbene-Ligated Cu3-xP Nanocrystals” Tappan, B.A.; Chen, K.; Lu, H.; Sharada, S. M.; Brutchey, R. L*. ACS Appl. Mater. Interfaces, 2020, 12, 16394-16401.
16. “Linear free energy relationships for transition metal chemistry: Case study of CH activation with copper-oxygen complexes” Lan, Z; Mallikarjun Sharada, S.* Phys. Chem. Chem. Phys., 2020 HOT Article, 2020, 22, 7155-7159.
2019
15. “Adsorption on transition metal surfaces: Transferability and accuracy of DFT using the ADS41 dataset,” Mallikarjun Sharada, S.; Karlsson, R. K. B.; Maimaiti, Y.; Voss, J.; Bligaard, T. Phys. Rev. B, 2019, 100, 035439.
2018
14. “Computational Strategies to Probe CH Activation in Dioxo-Dicopper Complexes,” Lan, Z.; Mallikarjun Sharada, S.* Phys. Chem. Chem. Phys., 2018, 20, 25602-25614.
13. “A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis,” Zhang, L.; Mallikarjun Sharada, S.; Singh, A. R.; Rohr, B. A.; Su, Y.; Qiao, L.; Nørskov, J. K. Phys. Chem. Chem. Phys., 2018, 20, 4982-4989.
2017
12. “SBH10: A benchmark database of barrier heights on transition metal surfaces,” Mallikarjun Sharada, S.; Bligaard, T.; Luntz, A. C.; Kroes, G.-J.; Nørskov, J. K. J. Phys. Chem. C. 2017, 121, 19807-19815.
11. “Theoretical analysis of the influence of pore geometry on monomolecular cracking and dehydrogenation of n-butane in Brønsted-acid zeolites,” Van der Mynsbrugge, J.; Janda, A.; Mallikarjun Sharada, S.; Lin, L-C.; Van Speybroeck, V.; Head-Gordon, M.; Bell, A. T. ACS Catal., 2017, 7, 2685-2697.
2015
10. “Wavefunction stability analysis without analytical electronic hessians: Application to orbital- optimized second order Møller-Plesset theory and VV10-containing density functionals,” Mallikarjun Sharada, S.; Stuck, D.; Sundstrom, E. J.; Bell, A. T.; Head-Gordon, M. Mol. Phys., 2015, 113, 1802-1808.
9. “Ethane and propane dehydrogenation over PtIr/Mg (Al) O,” Wu, J.; Mallikarjun Sharada, S.; Ho, C.; Hauser, A. W.; Head-Gordon, M.; Bell, A. T. Appl. Catal. A: General, 2015, 506, 25-32.
8. “Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n-Alkanes on Brønsted Acid Sites in Zeolites,” Janda, A.; Vlaisavljevich, B.; Lin, L.-C.; Mallikarjun Sharada, S.; Smit, B.; Head-Gordon, M.; Bell, A. T. J. Phys. Chem. C., 2015, 119, 10427-10438.
7. “Improved Force-Field Parameters for QM/MM Simulations of the Energies of Adsorption for Molecules in Zeolites and a Free Rotor Correction to the Rigid Rotor Harmonic Oscillator Model for Adsorption Enthalpies,” Li, Y.-P.; Gomes, J.; Mallikarjun Sharada, S.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. C, 2015, 119, 1840-1850.
6. “Advances in molecular quantum chemistry contained in the Q-Chem 4 program package,” Shao, Y.; Gan Z.; Epifanovsky, E.; …; Mallikarjun Sharada, S. et al. Mol. Phys., 2015, 113, 184-215.
2014
5. “A finite difference Davidson procedure to sidestep full ab initio hessian calculation: Application to characterization of stationary points and transition state searches,” Mallikarjun Sharada, S.; Bell, A. T.; Head-Gordon, M. J. Chem. Phys. 2014, 140, 164115.
2013
4. “Insights into the kinetics of cracking & dehydrogenation reactions of light alkanes in H-MFI,” Mallikarjun Sharada, S.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. C. 2013, 117, 12600-12611.
2012
3. “Automated transition state searches without evaluating the hessian,” Mallikarjun Sharada, S.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Special Issue, J. Chem. Theory Comput. 2012, 8, 5166-5174.
Pre-2012
2. “A comprehensive single-particle model for solid-state polymerization of poly(L-lactic acid),” Katiyar, V.; Mallikarjun Sharada, S.; Nanavati, H. J. Appl. Polymer Sci. 2011, 122, 2966-2980.
1. “Degradation of water soluble polymers under combined ultrasonic and ultraviolet radiation,” Aarthi, T.; Mallikarjun Sharada, S.; Madras, G. Ind. Eng. Chem. Res., 2007, 46, 6204-6210.